MEKK1 is essential for DT40 cell apoptosis in response to microtubule disruption.

نویسندگان

  • R Kwan
  • J Burnside
  • T Kurosaki
  • G Cheng
چکیده

Vinblastine and other microtubule-damaging agents, such as nocodazole and paclitaxel, cause cell cycle arrest at the G2/M transition and promote apoptosis in eukaryotic cells. The roles of these drugs in disrupting microtubule dynamics and causing cell cycle arrest are well characterized. However, the mechanisms by which these agents promote apoptosis are poorly understood. We disrupted the MEKK1 kinase domain in chicken bursal B-cell line DT40 by homologous recombination and have shown that it is essential for both vinblastine-mediated apoptosis and vinblastine-mediated c-Jun N-terminal protein kinase activation. In addition, our data indicate that vinblastine-mediated apoptosis in DT40 cells requires new protein synthesis but does not require G2/M arrest, suggesting that vinblastine-mediated cell cycle arrest and apoptosis are two independent processes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Apoptosis Induced by Cytoskeletal Disruption Requires Distinct Domains of MEKK1

MEKK1 is a mitogen-activated protein kinase kinase kinase (MAP3K) that activates the MAPK JNK and is required for microtubule inhibitor-induced apoptosis in B cells. Here, we find that apoptosis induced by actin disruption via cytochalasin D and by the protein phosphatase 1/2A inhibitor okadaic acid also requires MEKK1 activation. To elucidate the functional requirements for activation of the M...

متن کامل

Involvement of Asp-Glu-Val-Asp-directed, caspase-mediated mitogen-activated protein kinase kinase 1 Cleavage, c-Jun N-terminal kinase activation, and subsequent Bcl-2 phosphorylation for paclitaxel-induced apoptosis in HL-60 cells.

Paclitaxel is a novel anticancer drug that has demonstrated efficacy toward treating several malignant tumor types. Here, we demonstrate that c-Jun NH(2)-terminal kinase (JNK), but not p38 mitogen-activated protein kinase or extracellular signal-regulated kinase 1/2, was persistently activated by paclitaxel or other microtubule-damaging agents within human leukemia HL-60 cells. Overexpression o...

متن کامل

MEKK1 suppresses oxidative stress-induced apoptosis of embryonic stem cell-derived cardiac myocytes.

A combination of in vitro embryonic stem (ES) cell differentiation and targeted gene disruption has defined complex regulatory events underlying oxidative stress-induced cardiac apoptosis, a model of postischemic reperfusion injury of myocardium. ES cell-derived cardiac myocytes (ESCM) having targeted disruption of the MEKK1 gene were extremely sensitive, relative to wild-type ESCM, to hydrogen...

متن کامل

Immunocytochemical Study on Microtubule Reorganization in HL-60 Leukemia Cells Undergoing Apoptosis

Background: Microtubules (MT) are important components of cell cytoskeleton and play key roles in cell motility mitosis and meiosis. They are also the targets of several anticancer agents which indicating their importance in maintaining cell viability. Microtubular reorganization contributing to apoptotic morphology occurs in normal and neoplastic cells undergoing apoptosis induced by cytotoxic...

متن کامل

MEK kinase 1 gene disruption alters cell migration and c-Jun NH2-terminal kinase regulation but does not cause a measurable defect in NF-kappa B activation.

MEK kinase 1 (MEKK1) is a 196-kDa mitogen-activated protein kinase (MAPK) kinase kinase that, in addition to regulating the c-Jun NH(2)-terminal kinase (JNK) pathway, is involved in the control of cell motility. MEKK1(-/-) mice are defective in eyelid closure, a TGFalpha-directed process involving the migration of epithelial cells. MEKK1 expression in epithelial cells stimulates lamellipodia fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 21 21  شماره 

صفحات  -

تاریخ انتشار 2001